Hochschule Düsseldorf University of Applied Sciences Zentrum für Innovative Energiesysteme Centre of Innovative Energy Systems

Prior-Approximation of Rule-Based Energy System Simulation for Fast Design Optimization

Marius Reich

9th International Conference on Smart Energy Systems 12-13 September 2023

BACKGROUND & MOTIVATION

Bringing complex analysis to the non-scientific audience

- Diverse systems for energy coverage possible, complexity of choice increases with RE
- Simple system comparison does not lead to the desired result
- Optimisation must be carried out, e.g. through DoE + Machine Learning

• Disadvantages: "Curse of Dimensionality", convergence, time requirement

Hochschule Düsseldorf University of Applied Sciences

BACKGROUND & MOTIVATION

1. Creating a prior model library

• For fixed superstructure:

- Combination of weather data...
 - Location in western, northern, eastern and southern Germany
- ... and typical load curves
 - Single and multi-family house, business, bakery

Hochschule Düsseldorf University of Applied Sciences

- 1. Creating a prior model library
 - Modelling using Gaussian process regressions
 - Use of the Python library GPyTorch
 - Utilizing an active query strategy for efficient learning:
 - Start with initial samples to simulate (in parallel)
 - o Train models
 - Sample new setting with highest uncertainty over all targets to approximate
 - \circ Abort when overall uncertainty is low enough
 - Time required to create the models: approx. 4,600 seconds

2. Generation of randomised use cases + assignment

- Random choice of the boundaries of the influencing variables
 - For this evaluation in the boundaries of the superstructure
 = no extrapolation
- Random selection of weather data based on latitude and longitude
- Matching to prior models:
 - Evaluation of the normalised time series via distance measure

3. Analysis: Finding a system configuration with minimal costs

- Optimization algorithm: particle swarm optimization ٠
- Comparison: simulation with user-specific boundary conditions VS ٠ assigned prior model, both approaches for TAC determination:

$$TAC = OPEX + INV + Penality$$

Annualised total costs Operating costs in €/a

in €/a

Annualised investment costs in €/a

15 10 \cap

Undercoverage: Penalty for cost function ٠

$$Penality = \max\left(0, hl_{max} - \sum_{i=1}^{n_{gen}} \dot{Q}_{H,i}\right) \cdot M$$

Boundary conditions and starting values of optimization are identical

Hochschule Düsseldorf University of Applied Sciences

4. Comparison of the results

- Costs achieved and calculation times required for a total of 40 runs:
 - Ø- Time required, Simulation: 1120 seconds, Prior: 5 seconds (-99,6 %)
 - Costs: 50% of all runs the same optimal setting is found, the other 50 %:
 - Changing the settings for optimization when using the prior models:

