

Forschung & Entwicklung

Kraft-Wärme-Kälte-Kopplung im Leistungsbereich von 10 kW mit periodisch arbeitender Sorptionsmaschine

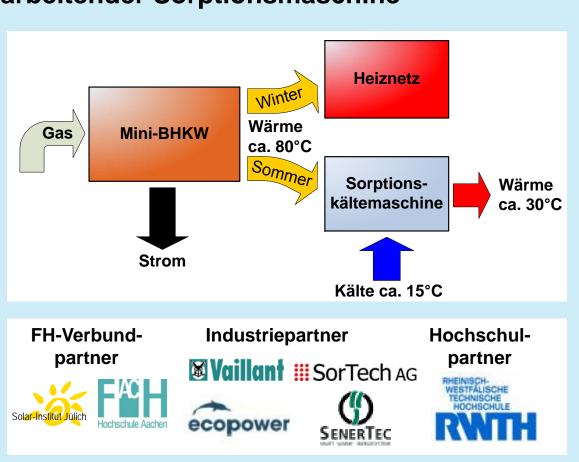
gefördert vom Bundesministerium für Bildung und Forschung im FH³-Programm

Förderzeitraum: 01.09.2005 -

31.10.2008

BEng F. Ille (FH D)

BEng S. Schramm (FH D)


Prof. Dr.-Ing. M. Adam (FH D)

Dipl.-Ing. K. Backes (SIJ)

Dipl.-Ing. A. Anthrakidis M.A. (SIJ)

Prof. Dr.-Ing. C. Faber (SIJ)

Mai 2008

Präsentationsinhalte

- Projektziele und Geräte
- Labor-Messungen
- Rechner-Simulationen
- Betriebsoptimierung
- > Ausblick
- Zusammenfassung

Teststand am Solar-Institut Jülich

Projektziele & Geräte

> Ziel

Kopplung eines modulierenden und eines nicht modulierenden BHKW mit einer periodisch arbeitenden Sorptionsmaschine im Leistungsbereich von 10 kW

→ Anpassung der Temperaturen, Volumenströme, Leistungen und Regelalgorithmen

> Aufgabe

Aufbau, Vermessung, Test, Modellbildung, Simulation, Auswertung und Optimierung

> Geräte

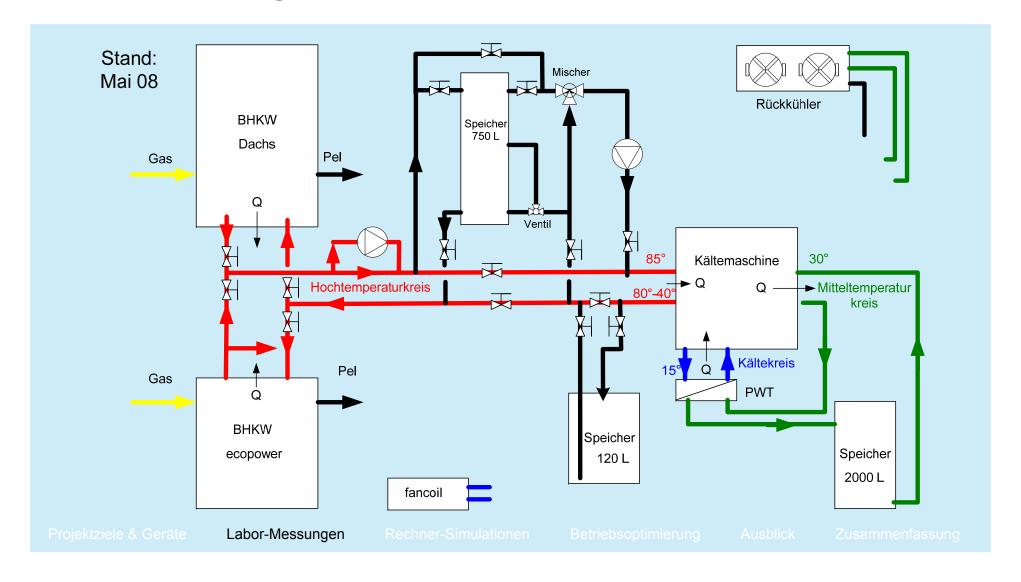
Adsorptionskältemaschine der Fa. SorTech AG (Stand August 2007)

*) 75-27-18 °C (Eintrittstemperaturen HT-MT-NT)

Hersteller	SorTech AG
Art	einstufig, periodisch arbeitend
Arbeitsstoffpaar	Silikagel/Wasser
Nenn-Kälteleistung	5,5 kW *)
Antriebsleistung	ca. 9,2 kW *)
СОР	0,6 *)

Projektziele & Geräte

➤ **Geräte**Spezifikationen der Blockheizkraftwerke


Hersteller	SenerTec GmbH	Power Plus Technologies GmbH
Produktname	Dachs	Ecopower
Art	Gas-Kolbenmotor-BHKW mit konstanter Leistung	Gas-Kolbenmotor-BHKW mit modulierender Leistung
thermische Leistung	12,5 kW	4,012,5 kW
elektrische Leistung	5,5 kW	1,34,7 kW
Vorlauftemperatur	80°C (bzw. 90°C)	75°C

Projektziele & Geräte

Labor-Messungen: Skizze des Teststandes

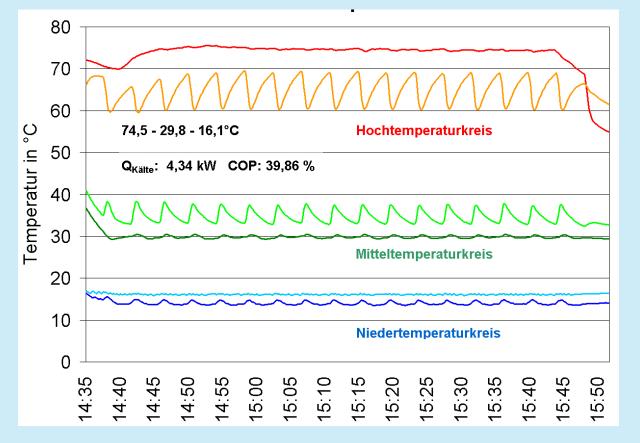
Labor-Messungen: Versuchsprogramm

- ➤ Teil- bzw. Volllastbetrieb der Kältemaschine bei verschiedenen Temperaturen und Volumenströmen
- ➤ Kopplung der Geräte mit bzw. ohne 750 Liter-Pufferspeicher
- → Grundlage für hydraulische und regelungstechnische Veränderungen in der Systemverschaltung
- → Validierungs-Benchmark bei der Entwicklung der Simulationsmodelle

Labor-Messungen: Betrieb der Kältemaschine

> Volllastbetrieb

- max. Zykluszeit von 500 s
- hohe Kälteleistung und geringer COP

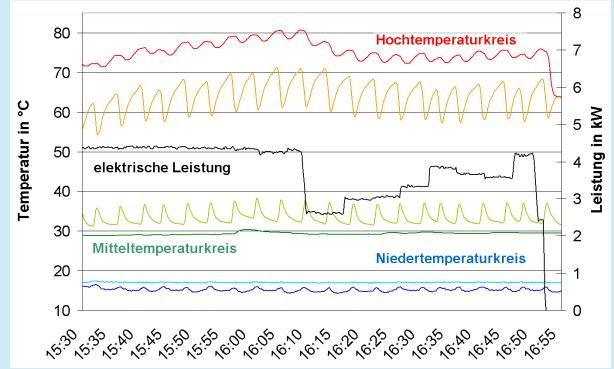

> Teillastbetrieb

- lange Zykluszeit
- geringere Kälteleistung und höherer COP

Zykluszeit

- = Adsorption +
 - Desorption +
 - 2 x Wärmerückgewinnung

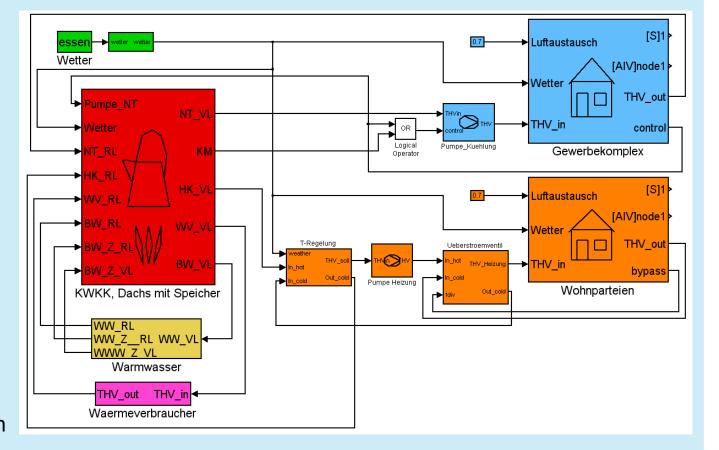
Volllastversuch mit 750 Liter-Speicher



Labor-Messungen: Kopplung der Geräte

- Kopplung mit Pufferspeicher
 - Mit beiden BHKWs sowohl in Voll- als auch in Teillast möglich
- → bei Dachs Verbesserung möglich mit veränderter hydraulischer Verschaltung
- Direkte Kopplung ohne Pufferspeicher
 - in Volllast der KM möglich, in Teillast bedingt, aufgrund höherer KM-Rücklauftemperaturen
- → bei Ecopower Verbesserung möglich mit angepasster Drehzahl-Regelung (= f (Teillast der KM))

Direkte Kopplung: Ecopower + KM

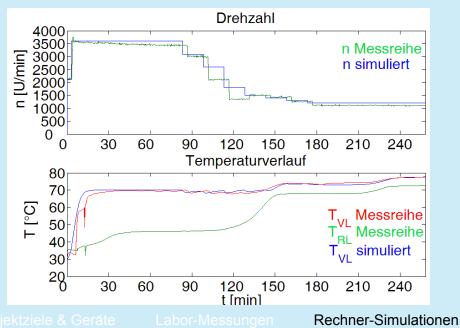

Rechner-Simulationen

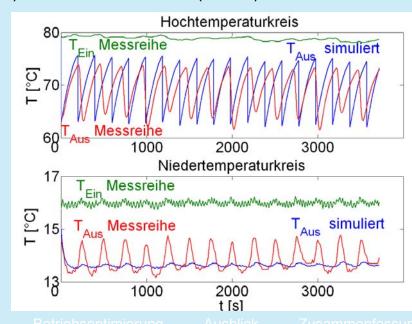
Werkzeug zur Modellierung und dynamischen Simulation der Anlagenkonzepte:

Interaktive
Softwareumgebung
MATLAB/Simulink
in Verbindung mit
Toolboxen CARNOT
und STATEFLOW

- Validierung der Simulationsmodelle
- Realisierte Anlagen-Simulationsmodelle
- > Betriebsoptimierungen

Oberste Ebene des Simulationsmodells in CARNOT

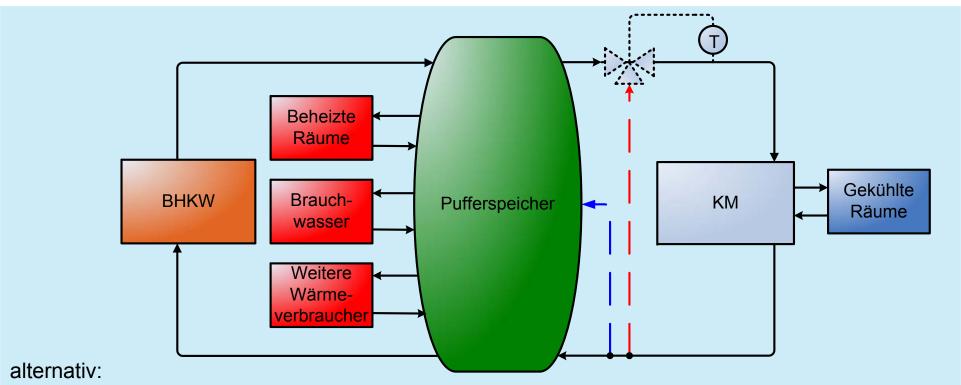



Validierung der Simulationsmodelle

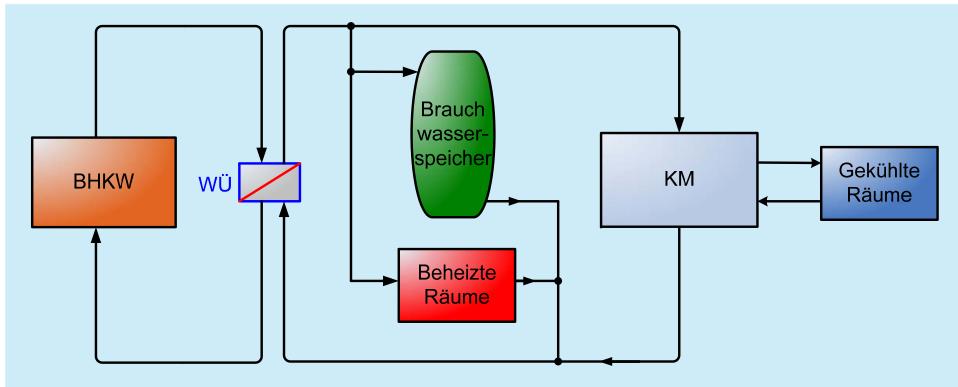
- Schwerpunkt: neue Modelle für Kältemaschine und BHKW Ecopower
- **▶ BHKW Dachs** → einfaches Regelverhalten
- ▶ BHKW Ecopower → komplexes Regelverhalten

- Kältemaschine
- sehr gute Abbildung der stationären und relevanten instationären Eigenschaften
- etwas leistungsfähiger als real

Simulations- und Messergebnisse für Ecopower (links) und Kältemaschine (rechts)



Standard-Anlagen-Modelle mit Pufferspeicher



- > mit oder ohne Konstanttemperaturmischer im Hochtemperatur-Zulauf zur KM
- Ventilumschaltung mit unterschiedlichen Einspeisestellen des KM-Austritts in den Speicher: konstant oder als Funktion von T_{Speicher}, T_{KM-Austritt}, BHKW An/Aus

Standard-Anlagen-Modelle ohne Pufferspeicher

alternativ:

- mit hydraulischer Weiche zwischen BHKW und Wärmeabnehmern
- mit Spitzenlast-Heiz/Kühlgerät für bivalenten Betrieb

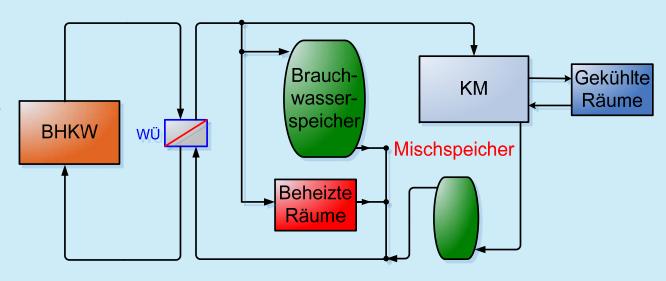
Realisierte Anlagen-Simulationsmodelle

Standard-Anlagen-Modelle

- > BHKW Dachs bzw. Ecopower mit Pufferspeicher
- > BHKW Dachs bzw. Ecopower ohne Pufferspeicher
- → Exemplarische Analyse des Betriebsverhalten
- → ausführliche Parametervariationen (Regeleinstellungen und Auslegungsgrößen)
 - unterstützt durch Methodik der Statistischen Versuchsplanung (DoE, Design of Experiments)

Beispiel zur Betriebsoptimierung

Einfluss eines Rücklaufreihenspeichers im Hochtemperaturaustritt der KM


Problem: häufiges Takten des BHKW aufgrund zu hoher Rücklauftemperaturen

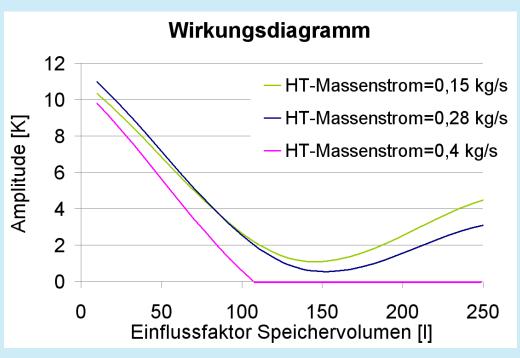
Simulationsanalysen

unterstützt durch Methode der Statistischen Versuchsplanung (DoE)

- Festlegung der Einflussund Zielgrößen
- 2. Voruntersuchung ("Screening")
- 3. Detailanalyse ("Zentral zusammengesetzter Versuchsplan")

System ohne Pufferspeicher, aber mit kleinem Mischspeicher im Hochtemperaturaustritt der KM

alternativ: mit hydraulischer Weiche zwischen BHKW und Wärmeabnehmern

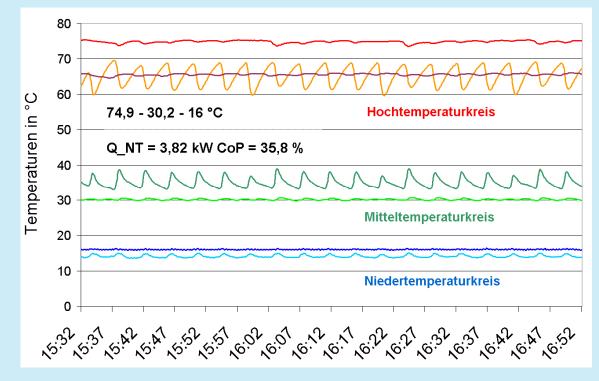


Beispiel zur Betriebsoptimierung

Einfluss eines Rücklaufreihenspeichers im Hochtemperaturaustritt der KM

- > Zielgrößen
- Taktung des BHKW
- Amplitude der Temperatur am Mischspeicheraustritt
- Mittlere Temperatur am Hochtemperatureintritt der KM
- Voruntersuchung (7 Parameter)
- → signifikante Einflussgrößen
- Volumen des Speichers
- HT-Massenstrom der KM
- Zykluszeit
- → ähnliches Verhalten von Taktung und Amplitude

- Detailanalyse zum Mischspeicher
- → bestmögliche Glättung bei Volumen von 120 bis 180 l robust bezüglich HT-Massenstrom und Zykluszeit



Beispiel zur Betriebsoptimierung

Einfluss eines Rücklaufreihenspeichers im Hochtemperaturaustritt der KM

- > Einbau eines 120 Liter-Speichers im Labor
- → erste Versuche zeigen Amplitudenreduzierung von 8 auf 2 K bei Volllastbetrieb der KM

Ausblick

- Abschluss der laufenden Analysen im Labor und bei den Rechnersimulationen
- Rechnersimulationen mit monovalenter und bivalenter Auslegung des KWKK-Systems zum Heizen und Kühlen (bivalent = Auslegung auf Grundlast)
- Praxistest zur Kühlung eines Laborraumes im Solar-Institut Jülich von Juni bis Sept. 2008 BHKW "Dachs" mit 750 Liter-Pufferspeicher, Fancoil und Trockenrückkühler
- Vergleichende Bewertung der untersuchten KWKK-Systeme zu konkurrierenden Möglichkeiten der Wärme-, Kälte- und Strombereitstellung

Zusammenfassung

- > Kopplung von Mini-BHKW mit periodisch arbeitender Sorptionskältemaschine sowohl mit als auch ohne Pufferspeicher funktioniert.
 - → elektrische Leistung: 4 5,5 kW, Kälteleistung: ca. 5 kW
- > **Probleme** (insbesondere bei Teillastbetrieb):
 - stark schwankende Austrittstemperatur der Kältemaschine im Hochtemperaturkreis
 - Leistungsanpassung der Geräte
- > Betriebsoptimierungen bezüglich der hydraulischen Verschaltung und der Regelungstechnik v.a. bei Betrieb ohne Pufferspeicher von Nöten
 - z.B. Mischspeicher im HT-Austritt der Kältemaschine, angepasste Drehzahl-Regelung für Ecopower (= f (Teillast der KM)), Konstanttemperaturmischer im HT-Zulauf zur Kältemaschine, unterschiedliche Einspeisestellen des KM-Austritts in den Speicher.

Forschungsprojekt "KWKK kleiner Leistung"

Vielen Dank für Ihr Interesse und Ihre Aufmerksamkeit!!!